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Abstract— We introduce a motion tracking method of 
arbitrary human upper body motion. Low cost wearable inertial 
sensors are employed in our approach to track the upper body 
movement in 3D space and in real time. We first establish a 
kinematic chain of a human upper body consisting of a trunk 
and two limbs. Then joint variables are computed for given 
rotation matrices of body segments which are measured using 6 
inertial measurement units. For this purpose, we solve a reduced 
form of inverse kinematics in the Lie group setting. To compare 
efficiency and accuracy of our system with the commercial 
marker based optical tracking system, Hawk Digital Real Time 
System, the upper body motion experiment was performed using 
the proposed algorithm.  
 

Index Terms—motion tracking, inertial sensors, joints, 
kinematics, motion capture. 

I. INTRODUCTION 

In recent, the motion tracking for the human body has 
broadened its range of applications from sports training [1] to 
rehabilitation [2]. Several tracking solutions have been 
provided to analyze human movement based on different 
sensing technologies such as optical systems, audio systems, 
radar systems, magnetic systems, inertial systems and 
mechanical motion systems [3].  Motion tracking with inertial 
sensors has been an active research area due to its several 
advantages. With the advance of Micro Electro Mechanical 
Systems (MEMS) technology, inertial sensors became 
smaller and lighter. Thus they can be rigidly attached to a 
segment and independently determine the orientation of each 
segment relative to the global reference frame [11].  Another 
benefit is that they are source-free compared to audio or radar 
systems that include an emission source [10]. Due to these 
benefits, inertial systems became portable and wearable, 
which made motion tracking available outdoors [6].  

The motion tracking has been extensively studied in recent 
years. El-Gohary et al. proposed the algorithm which 
estimates the joint angles from inertial sensors based on the 
robotic kinematic model using Denavit-Hartenberg 
representation [4].  Zhou et al. described upper limb motion 
tracking system. They developed a kinematic model of 
human arm and estimated position and orientation of the 
forearm based on inertial sensors. They also proposed the 
filtering method that eliminates the errors whose Euclidean 
distances is larger than a threshold [5].  Zhu et al. presented 
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the motion tracking system which tracks orientations and 
positions of human segments applying axis-angle pairs 
consisting of a joint angle and a rotation axis rather than the 
Euler angles to avoid Euler angles’ singularities [6]. They 
also implemented the linear Kalman filter to estimate sensing 
variables from inertial sensors.    
 Some researches employed both vision and inertial sensors 
in motion tracking systems. Tao et al. proposed the motion 
tracking system to track the arm movement [7]. They 
integrated visual-based color object tracking and inertial 
sensor tracking by fusing the data from the two different 
sensors using the geometry and structure information. Chen et 
al. proposed the method to estimate structure and motion by 
integrating visual and inertial sensor data via an Extended 
Kalman filter [8]. They use gyro data and acceleration and 
estimate structure in addition to motion. Marlins et al. 
integrated multisensory signals via a nonlinear Kalman filter 
based on a nonlinear quaternion model [9].  

In this paper, we present the method to track the human 
upper body movement. The algorithm uses data from inertial 
sensors in the Lie group setting. The joint variables of the 
arms and the waist are estimated from the rotation matrices 
based on the robotic kinematic model. The estimated joint 
variables are used to control the 3D human upper body model.    

The rest of the paper is organized as follows. Section 2 
describes about the human upper body kinematic model and 
conduct tracking based on the collected rotation matrices. 
Section 3 introduces experimental results. Conclusion and 
future works are presented in Section 4. 

II. KINEMATIC MODELING  

A. Forward Kinematics 
Human upper body motion can be modeled by a kinematic 

chain [12].The proposed upper body model consists of three 
open kinematic chains, i.e. torso to left arm, torso to right arm, 
and torso to pelvis as shown in Fig. 1.  Each upper arm is 
linked to the trunk by a spherical joint and each forearm is 
linked to each upper arm by a revolute joint. The trunk and 
the pelvis are linked by a spherical joint. The forearm and the 
hand are considered as one rigid segment. Therefore, the 
upper body model consists of eleven joint variables, i.e. three 
joints variables for each shoulder, one joint variable for each 
elbow, and three spherical joints variables for the waist. Each 
sensor is attached on each segment: the upper arms, the 
forearms, the torso, and the pelvis as shown in Fig. 1. The 
kinematics of the model is presented by multiples of matrices 
parameterized by joint variables in the product of 
exponentials formula and end-effector lies in the Euclidean 
motion group, (3)SE . Given a set of joint variables q Q∈ ,  
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the forward kinematics is represented by ma
: (3)T Q SE→ , where the joint space Q

product between each individual joint space
 

If we define ��� as the transformation fro
frame of the torso to the coordinate frame of
the overall kinematics are given by 
 

 s eq
t f t t s s u u euT T T e T T T e= q

    
where 3

s ∈q �  and eq ∈� are the joint 
shoulder  joint and the elbow joint. 
 

tT :  measured transformation (torso) 

tsT : translation from torso to shoulder joint 
seq : rotation of  shoulder joint 

suT : translation from shoulder joint to upper

uT :  measured transformation (upper arm) 

ueT : translation from upper arm to elbow jo
eqe : rotation of  elbow joint 

efT : translation from elbow joint  to forearm

 
The same method can also be applied to th
transformation from the coordinate frame o
coordinate frame of the pelvis is given by 
 

 ,w
tp t tw wp pT T T e T T= q

 

 
where 3

w ∈q � is the joint variable of the w
 

tT :  measured rotation (torso) 

twT : translation from torso to waist joint 
weq : rotation of  waist joint 

 
Fig. 1. Articulated Upper Body Model 
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Fig. 2. Physical segment model and the definition of i

 
Since only the orientations are of our conc
representing the rotational equations is use
equations for the two sensors on the arm are
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The same method is applied for th
from torso to right arm. The inverse
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III. EXPERIMENTAL

A. System Configuration 
Each inertial measurement unit 
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Fig. 3. Photograph of inertial measurement unit 

 
LPY5150AL with a full scale of ��	

 , a tri-axis 
magnetometer HMC5843 with �������measurement range, 
a microcontroller (Cortex M3), and a Bluetooth module 
(FB155BC). The sampled data from all sensors were 
transmitted to a microcontroller. The microcontroller 
processed the received sensor data and determined the 
rotation matrix of the IMU. The rotation matrix was 
transmitted to a personal computer through a Bluetooth 
module.  

B. Results 
The accuracy is evaluated by comparing the performance of 

the proposed algorithm with that of the commercial motion 
capture system, Hawk Digital Real Time System. The subject 
wears both the suit of the Hawk system with markers and our 
inertial sensors. The initial posture of the 3D model for this 
experiment is to stretch out the right arm and fix it to the trunk. 
Then repeat to move the forearm upward and downward, 
back to the initial posture, maintaining the right upper arm 
fixed to the trunk. Fig. 4 shows measurements of this arm 
movement. The Hawk system provides the wrist position 
represented in the world coordinate systems. The wrist 
position is also calculated by using the proposed human upper 
body kinematic model. Dashed lines represent data from the 
Hawk system, and solid lines from our system. Three 
coordinates x, y, z of the position trajectories of the wrist joint 
are plotted. 

As can be seen in Fig. 4, the data from the Hawk system and 
that from our system match well. The data of the x was less 
accurate than the other coordinates, but the difference 
between the two systems for the y and z coordinates is less 
than 5cm.  The results are quite promising and show that the 
proposed system is reasonably accurate.  

The wrist position is calculated by substituting the joint 
variables which are computed for given rotation matrices of 
body segments into the proposed kinematic model. In this 
experiment, the posture is to stretch out the right arm 
vertically and remain still.  Fig. 5. shows the position data of 
the right wrist in a stationary condition. Three coordinates x, 
y, z of the position trajectories of the wrist joint are plotted. 
As shown in Fig. 5., The position continues to remain stable. 

Fig. 6 shows the human upper body motion capture results 
of the three different movements. The first movement is to 
raise both arms above the head. The initial posture of the 3D  

 
Fig. 4. Measurements of human arm movement (solid lines measured by the 
proposed kinematic models and dashed lines measured by Hawk Real Time 
System) 

 
model is to spread both arms out horizontally as shown in Fig. 
6(a). Fig. 6(b) shows that the movement of the 3D human 
upper body model matches that of the subject. As shown in 
Fig. 6(c) and 6(d), the second movement is to attach the upper 
arms to the body and bend the arms to make the forearms face 
upward. Then stretch out the arm one by one. The third 
movement is to bend the waist side to side as shown in 6(e) 
and 6(f). Since the pelvis is fixed, the whole upper body 
above the waist moves side to side.  

By comparing the movement of the 3D human upper body 
model and that of the subject, we can see that the 3D model 
simultaneously makes the same movements as the subject.  
Various movements of the upper body have been tested 
extensively. 

The proposed algorithm has shown a stable and accurate 
performance in the test, which means that the joint variables 
estimated from the rotation matrices of the sensors have 
reasonable accuracy. However, since the kinematics of the 
3D model and that of the subject does not match perfectly, a 
slight difference between the movements exists. The length of 
the segments was measured with errors. Thus the computed 
positions of joints cannot be perfectly accurate. 

IV.  CONCLUSION AND FUTURE WORKS  
We have presented a kinematic model and motion tracking 
algorithm to track human upper body motion using low cost 
inertial sensors. Our inertial sensor can measure a rotation 
matrix of a body segment accurately. Given these rotation 
matrices of the coordinate frames attached to a torso, a pelvis, 
upper and forearms, we estimate joint variables 
corresponding to a current posture by solving inverse rotation 
kinematics in a Lie group setting. The 3D human upper body 
model is controlled with the estimated joint variables. The 
position of each joint is calculated by substituting joints 
variables into the proposed kinematic model. Our approach 
showed comparable results to the commercial optical tracking 

1749



  

 Fig. 5.Wrist position (solid lines measured by the proposed kinematic 
models) in a stationary condition. 

system.  
However we noticed that overall accuracy of our system 

heavily depends on kinematic parameters of the model such 
as lengths of body segments, locations of IMU sensors, etc. 
These factors cause errors in a performance. Hence our future 
work includes automatic and accurate estimate methods to 
obtain more accurate kinematic parameters.  

Extending the proposed method to track the whole body 
movement will also be interesting. However a basic 
assumption of our work is that we have at least one grounded 
body segment which defines an absolute global reference 
frame. Hence free flying full body motion such as a jumping 
motion requires additional techniques to track with respect to 
a global coordinate frame.  

 
 
 
 
 
 
 
 

   
(a)                                                                                             (b) 

  
(c)                                                                                             (d) 

  
(e)                                                                                             (f) 

Fig. 6. The upper body motion capture results
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